全国免费咨询

13969074155

好活当赏:Haven Mercer 的纯机械全自动变速概念

  • 来源:安博体育电竞ios
  • 添加时间: 2024-02-12 18:06:13
  • 在过去的几十年里,自行车传动系统经历了多次性能进化,最终形成了如今非常可靠、易于使用的形态,覆盖
产品介绍 / introduction

  在过去的几十年里,自行车传动系统经历了多次性能进化,最终形成了如今非常可靠、易于使用的形态,覆盖了全部价格的范围的产品。此外,我们已看到了正负齿的广泛采用,能大大的提升链条与盘片的结合力,同时后拨上的导板张力离合也在为链条运行的稳定性提供帮助(当然也有助于保持链条运转中的静音),并还有1x系统与超宽齿比飞轮,特别是在有了超大爬坡飞之后,可能真的就可以像我老父亲说的那样“骑上房顶“了。

  然后,出现了无线化、电子化,以及近期为eMTB引入的自动变速和滑行变速功能。这两年,我们正真看到了在机动车领域存在多年的变速箱技术出现在自行车领域,具体是变速机构和eBike电机设置在同一个密封的模块中,一个模块就可以完成所有驱动工作。

  虽然所有这些事情都令人欣喜,但也可以说,它们在某一些程度上是循规蹈矩地向上发展。在传动系统方面,我们很少看到完全“离大谱“的东西。因此,在过去的几天里,随着Haven Mercer关于“自行车自动变速器系统”专利的公布,激起了笔者我的无限兴致。

  在图中我们大家可以看到一个无级变速系统,也就是说传动比会在最大值和最小值之间自由变化,没固定的档位,实际上也相当于是无限挡位。而且,这套变速系统不仅是全自动的,而且是完全机械化的。之后,我们从发明者本人那里得到了更多细节。

  我们特别高兴地看到,Mercer的无级变速系统并不是纸上谈兵。事实上,他已经制造了一套能够顺利工作的、并能骑行的原型车。

  而且,他把这套系统带到了山地自行车上。实际上他的目标是继续开发这套系统,并且使其足以适应越野骑行,而且他预计如果这套系统能够应对山地自行车的需求,那么它肯定也可以轻松应对公路自行车等别的方面的需求。这个想法十分合理。

  该系统的核心是牙盘片(目前暂时还没有更好来形容的词)和后飞轮片具有自动膨胀和收缩的能力,以适应不一样的扭矩输入。两者都由许多围绕旋转中心分布的导轮组成,每个导轮都支撑在连杆上,连杆的位置由弹簧和在任何给定力矩中施加的扭矩决定。

  在牙盘片上,这个结构会默认为将导轮完全伸展,这样当踏板上没有负载时,它们都处于离旋转中心最远的位置。在这种情况下,牙盘片的等效齿数处在范围内的最大值。

  在我继续介绍分析之前,必须要强调的是,每个导轮都被安装在单向轴承上。在牙盘片上,导轮可以顺时针旋转,不能逆时针旋转。

  因此,当扭矩施加到踏板上并且链条开始被牵引时,牙盘结构中最近的一片导轮与链条结合,成为了等效的扭矩传感机构。施加的扭矩越大,弹簧被压缩的力就越大,随之而来的是,等效牙盘片齿数变小。

  实际上,当感应扭矩的导轮支臂连杆被压缩时,所有其他导轮连杆都会被同步压缩。导轮从而能够顺时针旋转,这使得它们能够和链条完成结合,这样,随着相邻导轮之间距离的减小,链条不会简单粗暴地被错位弹出。当扭矩降低然后有效盘片齿数变大时也是如此。

  整套机械结构在后飞轮上的原理则完全相反。在后轮上,弹簧和连杆系统被设置为使等效的飞轮齿数偏向尽可能小的尺寸,此时各导轮之间间距最小。

  因此,在空载状态下,整套变速系统始终处在齿比最大的挡位。踩在踏板上会迫使飞轮片等效齿数增加,牙盘片等效齿数减小,从而使变速朝着相对容易踩踏的档位变化。随着骑行中动量的增加,车手踩踏的扭矩输入减小,飞轮机构收缩,牙盘机构扩张。这样,整套变速系统就能够准确的通过车手的踩踏需求自动进行变速。

  我突然想到,从理论上讲,可以在不用任何链条张紧器的情况下运行该系统。不难看出,随着牙盘处链条长度需求的增加,飞轮处的链条长度需求也会随之降低。虽然情况如此,这并不等同于自带了链条张紧功能。

  这种无级变速器的发明者Haven Mercer解释说,这套变速实际上不仅仅需要一个链条张紧器,而是两个。这是因为两端膨胀和收缩的速度不同,这可能会在上下链线上造成不必要的链条张力放松。上侧的张紧器还兼作一种导链器,考虑到链条在被送入牙盘片时上下跳动的剧烈程度,确实还是很有必要的。

  正如我所提到的,发明者Haven Mercer打算将这种变速系统开发到足以用于山地自行车、高难度爬坡等用途的地步。但目前的原型车还是存在着种种问题的,主要是弹簧太软,因此在踩踏负载下太容易压缩。正因为如此,他说它目前“有点黏糊”。

  当然大家懂的都懂,完美兼容的弹簧刚度肯定不存在,或者至少对于每个车手或每种地形来说都不会相同。所以说,Haven还计划对其进行进一步设计,以便终端用户可以轻松更换弹簧。

  另一个问题是单向轴承的耐久性,更加不用说在有这么多可动零件的情况下,可能会产生的更多的耐久性问题。

  如果不上路实测,就很难衡量它在任何工况下的效果究竟如何。然而,我们一定要得承认这项发明确实免除了换挡这一步骤,只需要车手进行踩踏,不必考虑当前的挡位或者理想的挡位,整套传动系统能完美适配扭矩输入。

  这确实能大大的提升安全性,尤其是在交通环境复杂的情况下。而且,特别是对那些基本不怎么骑车的人,他们对自行车的操控逻辑不是很精通。这样的人在骑行中需要仔细考虑的操作越少,他们就越能腾出精力关注道路情况和周围的其他道路使用者。